Zornの補題
T0が塔になることの証明
p∈P(X×Y), f:Z→X, g:Z→Y に対して
p+: P(X)→P(Y),
p-: P(Y)→P(X),
p*(f,g): P(Z)→P(Z) を
-
p+(A) = ∪x∈A{y∈Y|(x,y)∈p} (∀A∈P(X))
-
p-(B) = ∪y∈B{x∈X|(x,y)∈p} (∀B∈P(X))
-
p*(f,g)(C) = {z∈C|(f(z),g(z))∈p} (∀C∈P(Z))
と定義します。
h:X→Y に対して
h+: P(X)→P(Y),
h-: P(Y)→P(X),
-
h+(A) = ∪x∈A{y∈Y|h(x)=y} (∀A∈P(X))
-
h-(B) = ∪y∈B{x∈X|h(x)=y} (∀B∈P(X))
と定義します。
f: P(X)→P(Y) が
-
f(A) = ∪x∈Af({x}) (∀A∈P(X))
を満たすとき、f は IMG を満たす
-
y,z∈f({x}) ⇒ y = z (∀x∈X∀y∈Y∀z∈Y)
を満たすとき、f は MAP を満たす
-
A≠φ ⇒ f(A)≠φ (∀A∈P(X))
を満たすとき、f は EXT を満たす
と定義します。
f,k: P(X)→P(Y), g: P(Y)→P(Z) のとき
-
(-f)(B) = {x∈X|f({x})∩B≠φ} (∀B∈P(Y))
-
(f+g)(A) = ∪y∈f(A)g({y}) (∀A∈P(X))
-
(f*g)(A) = ∩y∈f(A)g({y}) (∀A∈P(X))
-
(f∪k)(A) = ∪x∈A(f({x})∪k({x})) (∀A∈P(X))
-
(f∩k)(A) = ∪x∈A(f({x})∩k({x})) (∀A∈P(X))
と定義します。
f,k: P(X)→P(Y), g: P(Y)→P(Z) が IMG
を満たすとすると
-
(f+g)(A) = g(f(A)) (∀A∈P(X))
-
(f∪k)(A) = f(A)∪k(A) (∀A∈P(X))
となります。
f,k: P(X)→P(Y), g: P(Y)→P(Z) のとき
次のことが成り立ちます。
-
(f+g)+h=f+(g+h)
(h: P(Z)→P(V))
|
((f+g)+h)(A)
|
= |
{v∈V|∃z∈Z(z∈(f+g)(A)∧v∈h({z}))}
|
= |
{v∈V|∃z∈Z(∃y∈Y(y∈f(A)∧z∈g({y}))∧v∈h({z}))}
|
= |
{v∈V|∃y∈Y(y∈f(A)∧∃z∈Z(z∈g({y})∧v∈h({z})))}
|
= |
{v∈V|∃y∈Y(y∈f(A)∧v∈(g+h)({y}))}
|
= |
(f+(g+h))(A) (∀A∈P(X))
|
-
(f+g)*h⊇f+(g*h)
(h: P(Z)→P(V))
|
((f+g)*h)(A)
|
= |
{v∈V|∀z∈Z(z∈(f+g)(A)⇒v∈h({z}))}
|
= |
{v∈V|∀z∈Z(∃y∈Y(y∈f(A)∧z∈g({y}))⇒v∈h({z}))}
|
⊇ |
{v∈V|∃y∈Y(y∈f(A)∧∀z∈Z(z∈g({y})⇒v∈h({z})))}
|
= |
{v∈V|∃y∈Y(y∈f(A)∧v∈(g*h)({y}))}
|
= |
(f+(g*h))(A) (∀A∈P(X))
|
-
g が IMG を満たすとき
(f+g)*h=f+(g*h)
(h: P(Z)→P(V))
|
((f+g)*h)(A)
|
= |
{v∈V|∀z∈Z(z∈(f+g)(A)⇒v∈h({z}))}
|
= |
{v∈V|∀z∈Z(z∈g(f(A))⇒v∈h({z}))}
|
= |
(g*h)(f(A))
|
= |
(f+(g*h))(A) (∀A∈P(X))
|
-
f⊆k∧g⊆h⇒f+g⊆k+h
(h: P(Y)→P(Z))
|
(f+g)(A)
|
= |
{z∈Z|∃y∈Y(y∈f(A)∧z∈g({y}))}
|
⊆ |
{z∈Z|∃y∈Y(y∈k(A)∧z∈h({y}))}
|
= |
(k+h)(A) (∀A∈P(X))
|
-
k⊆f∧g⊆h⇒f*g⊆k*h
(h: P(Y)→P(Z))
|
(f+g)(A)
|
= |
{z∈Z|∀y∈Y(y∈f(A)⇒z∈g({y}))}
|
⊆ |
{z∈Z|∀y∈Y(y∈k(A)⇒z∈h({y}))}
|
= |
(k+h)(A) (∀A∈P(X))
|
-
f⊆k⇒-f⊆-k
|
(-f)(B)
|
= |
{x∈X|f({x})∩B≠φ}
|
⊆ |
{x∈X|k({x})∩B≠φ}
|
= |
(-k)(B) (∀B∈P(Y))
|
-
f が IMG を満たすとき
-(-f)=f
|
(-(-f))(A)
|
= |
{y∈Y|(-f)({y})∩A≠φ}
|
= |
{y∈Y|∃x∈X(x∈(-f)({y})∧x∈A)}
|
= |
{y∈Y|∃x∈X(y∈f({x})∧x∈A)}
|
= |
f(A) (∀A∈P(X))
|
-
1⊆f+(-f)
|
((f+(-f))(A)
|
= |
{x∈X|f({x})∩f(A)≠φ}
|
⊇ |
A (∀A∈P(X))
|
-
(f*g)+h⊆f*(g+h)
(h: P(Z)→P(V))
|
((f*g)+h)(A)
|
= |
{v∈V|∃z∈Z∀y∈Y((y∈f(A)⇒z∈g({y}))∧v∈h({z}))}
|
⊆ |
{v∈V|∀y∈Y∃z∈Z(y∈f(A)⇒(z∈g({y})∧v∈h({z})))}
|
= |
(f*(g+h))(A) (∀A∈P(X))
|
-
f⊆(f*g)*(-g)
|
((f*g)*(-g))(A)
|
= |
{y∈Y|∀z∈Z(z∈(f*g)(A)⇒y∈(-g)({z}))}
|
= |
{y∈Y|∀z∈Z(∀v∈Y(v∈f(A)⇒z∈g({v}))⇒y∈(-g)({z}))}
|
⊇ |
{y∈Y|∀z∈Z((y∈f(A)⇒z∈g({y}))⇒z∈({y}))}
|
⊇ |
{y∈Y|y∈f(A)} (∀A∈P(X))
|
-
f が MAP を満たすとき (-f)+f⊆1
|
((-f)+f)(B)
|
= |
{y∈Y|∃x∈X(x∈(-f)(B)∧y∈f({x}))}
|
= |
{y∈Y|∃x∈X(∃v∈Y(v∈f({x})∧v∈B)∧y∈f({x}))}
|
= |
{y∈Y|∃x∈X(y∈B∧y∈f({x}))}
|
⊆ |
{y∈Y|y∈B} (∀B∈P(Y))
|
-
g が MAP を満たすとき f*(g+h)=(f*g)*h
(h: P(Z)→P(V))
|
(f*(g+h))(A)
|
= |
{v∈V|∀y∈Y(y∈f(A)⇒v∈(g+h)({y}))}
|
= |
{v∈V|∀y∈Y(y∈f(A)⇒∃z∈Z(z∈g({y})∧v∈h({z})))}
|
= |
{v∈V|∀y∈Y(y∈f(A)⇒∀z∈Z(z∈g({y})⇒v∈h({z})))}
|
= |
(f*(g*h))(A) (∀A∈P(X))
|
-
f*(g*h)⊆(f+g)*h
(h: P(Z)→P(V))
|
(f*(g*h))(A)
|
= |
{v∈V|∀y∈Y(y∈f(A)⇒∀z∈Z(z∈g({y})⇒v∈h({z})))}
|
= |
{v∈V|∀z∈Z∀y∈Y(y∈f(A)⇒(z∈g({y})⇒v∈h({z})))}
|
= |
{v∈V|∀z∈Z∀y∈Y((y∈f(A)∧z∈g({y}))⇒v∈h({z}))}
|
⊆ |
{v∈V|∀z∈Z(∃y∈Y(y∈f(A)∧z∈g({y}))⇒v∈h({z}))}
|
= |
{v∈V|∀z∈Z(z∈(f+g)(A)⇒v∈h({z}))}
|
= |
((f+g)*h)(A) (∀A∈P(X))
|
-
f, k が IMG を満たすとき
-(f∪k)=(-f)∪(-k)
|
(-(f∪k))(B)
|
= |
{x∈X|(f∪k)({x})∩B≠φ}
|
= |
{x∈X|(f({x})∪k({x}))∩B≠φ}
|
= |
{x∈X|f({x})∩B≠φ}∪{x∈X|k({x})∩B≠φ}
|
= |
(-f)(B)∪(-k)(B)
|
= |
((-f)∪(-k))(B) (∀B∈P(Y))
|
-
(-(f∩k))({y})=((-f)∩(-k))({y}) (∀y∈Y)
|
(-(f∩k))({y})
|
= |
{x∈X|(f∩k)({x})∩{y}≠φ}
|
= |
{x∈X|(f({x})∩k({x}))∩{y}≠φ}
|
= |
{x∈X|f({x})∩{y}≠φ}∩{x∈X|k({x})∩{y}≠φ}
|
= |
(-f)({y})∩(-k)({y})
|
= |
((-f)∩(-k))({y}) (∀y∈Y)
|
-
1*(-(f∩k))=1*((-f)∩(-k))
|
(1*(-(f∩k)))(B)
|
= |
{x∈X|∀y∈Y(y∈B∧x∈(-(f∩k))({y}))}
|
= |
{x∈X|∀y∈Y(y∈B∧(f∩k)({x})∩{y}≠φ)}
|
= |
{x∈X|∀y∈Y(y∈B∧y∈(f∩k)({x}))}
|
= |
{x∈X|∀y∈Y(y∈B∧y∈(f({x})∩k({x}))}
|
= |
{x∈X|∀y∈Y(y∈B∧y∈f({x})∧y∈k({x}))}
|
= |
{x∈X|∀y∈Y(y∈B∧x∈(-f)({y})∧x∈(-k)({y}))}
|
= |
{x∈X|∀y∈Y(y∈B∧x∈(-f)({y})∩(-k)({y}))}
|
= |
{x∈X|∀y∈Y(y∈B∧x∈((-f)∩(-k))({y}))}
|
= |
(1*((-f)∩(-k)))(B) (∀B∈P(Y))
|
-
-(f+g)=(-g)+(-f)
|
(-(f+g))(C)
|
= |
{x∈X|(f+g)({x})∩C≠φ}
|
= |
{x∈X|∃z∈Z(z∈(f+g)({x})∧z∈C)}
|
= |
{x∈X|∃z∈Z(∃y∈Y(y∈f({x})∧z∈g({y}))∧z∈C)}
|
= |
{x∈X|∃y∈Y(∃z∈Z(z∈g({y})∧z∈C)∧y∈f({x}))}
|
= |
{x∈X|∃y∈Y(y∈(-g)(C)∧x∈(-f)({y}))}
|
= |
((-g)+(-f))(C) (∀C∈P(Z))
|
-
g が EXT を満たすとき f+(g*h)⊆f+(g+h)
(h: P(Y)→P(Z))
|
(f+(g*h))(A)
|
= |
{v∈V|∃y∈Y(y∈f(A)∧v∈(g*h)({y}))}
|
= |
{v∈V|∃y∈Y(y∈f(A)∧∀z∈Z(z∈g({y})⇒v∈h({z})))}
|
⊆ |
{v∈V|∃y∈Y(y∈f(A)∧∃z∈Z(z∈g({y})∧v∈h({z})))}
|
= |
{v∈V|∃y∈Y(y∈f(A)∧v∈(g+h)({y}))}
|
= |
(f+(g+h))(A) (∀A∈P(X))
|
-
g が EXT を満たすとき f*(g*h)⊆f*(g+h)
(h: P(Y)→P(Z))
|
(f*(g*h))(A)
|
= |
{v∈V|∀y∈Y(y∈f(A)⇒v∈(g*h)({y}))}
|
= |
{v∈V|∀y∈Y(y∈f(A)⇒∀z∈Z(z∈g({y})⇒v∈h({z})))}
|
⊆ |
{v∈V|∀y∈Y(y∈f(A)⇒∃z∈Z(z∈g({y})∧v∈h({z})))}
|
= |
{v∈V|∀y∈Y(y∈f(A)⇒v∈(g+h)({y}))}
|
= |
(f*(g+h))(A) (∀A∈P(X))
|
-
(f+g)∪(f+h)=f+(g∪h)
(h: P(Y)→P(Z))
|
((f+g)∪(f+h))(A)
|
= |
{z∈Z|∃x∈X(x∈A∧(z∈(f+g)({x})∨z∈(f+h)({x})))}
|
= |
{z∈Z|∃x∈X(x∈A∧(∃y∈Y(y∈f({x})∧z∈g({y}))∨∃y∈Y(y∈f({x})∧z∈h({y}))))}
|
= |
{z∈Z|∃x∈X(x∈A∧(∃y∈Y(y∈f({x})∧(z∈g({y})∨z∈h({y}))))}
|
= |
{z∈Z|∃x∈X(x∈A∧(∃y∈Y(y∈f({x})∧z∈(g∪h)({y}))}
|
= |
{z∈Z|∃x∈X(x∈A∧z∈(f+(g∪h))({x}))}
|
= |
(f+(g∪h))(A) (∀A∈P(X))
|
-
(f+g)∩(f+h)⊇f+(g∩h)
(h: P(Y)→P(Z))
|
((f+g)∩(f+h))(A)
|
= |
{z∈Z|∃x∈X(x∈A∧(z∈(f+g)({x})∧z∈(f+h)({x})))}
|
= |
{z∈Z|∃x∈X(x∈A∧(∃y∈Y(y∈f({x})∧z∈g({y}))∧∃y∈Y(y∈f({x})∧z∈h({y}))))}
|
⊇ |
{z∈Z|∃x∈X(x∈A∧(∃y∈Y(y∈f({x})∧(z∈g({y})∧z∈h({y}))))}
|
= |
{z∈Z|∃x∈X(x∈A∧(∃y∈Y(y∈f({x})∧z∈(g∩h)({y}))}
|
= |
{z∈Z|∃x∈X(x∈A∧z∈(f+(g∩h))({x}))}
|
= |
(f+(g∩h))(A) (∀A∈P(X))
|
-
f が MAP を満たすとき
(f+g)∩(f+h)=f+(g∩h)
(h: P(Y)→P(Z))
|
((f+g)∩(f+h))(A)
|
= |
{z∈Z|∃x∈X(x∈A∧(z∈(f+g)({x})∧z∈(f+h)({x})))}
|
= |
{z∈Z|∃x∈X(x∈A∧(∃y∈Y(y∈f({x})∧z∈g({y}))∧∃y∈Y(y∈f({x})∧z∈h({y}))))}
|
= |
{z∈Z|∃x∈X(x∈A∧(∃y∈Y(y∈f({x})∧(z∈g({y})∧z∈h({y}))))}
|
= |
{z∈Z|∃x∈X(x∈A∧(∃y∈Y(y∈f({x})∧z∈(g∩h)({y}))}
|
= |
{z∈Z|∃x∈X(x∈A∧z∈(f+(g∩h))({x}))}
|
= |
(f+(g∩h))(A) (∀A∈P(X))
|
-
f, k が IMG を満たすとき
1*f⊆1*k⇒f⊆k
|
f(A)
|
= |
∪x∈Af({x})
|
= |
∪x∈A∩y∈{x}f({y})
|
= |
∪x∈A(1 * f)({x})
|
⊆ |
∪x∈A(1 * k)({x})
|
= |
∪x∈A∩y∈{x}k({y})
|
= |
∪x∈Ak({x})
|
= |
k(A) (∀A∈P(X))
|
-
{x}⊆(f*(-f)){x}
|
(f*(-f)){x}
|
= |
{v∈X|∀y∈Y(y∈f({x})⇒v∈(-f)({y}))}
|
= |
{v∈X|∀y∈Y(y∈f({x})⇒y∈f({v}))}
|
⊇ |
{x}
|
-
k∩h⊆(f*((-f)+k))∩h
(h: P(X)→P(Y))
|
((f*((-f)+k))∩h)(A)
|
= |
∪x∈A((f*((-f)+k))({x})∩h({x}))
|
⊇ |
∪x∈A(((f*(-f))+k)({x})∩h({x}))
|
⊇ |
∪x∈A(k({x})∩h({x}))
|
= |
(k∩h)(A) (∀A∈P(X))
|
-
(f+g)∩(f*h)⊆f+(g∩h)
(h: P(Y)→P(Z))
|
((f+g)∩(f*h))(A)
|
= |
{z∈Z|∃x∈X(x∈A∧z∈(f+g)({x})∧z∈(f*h)({x}))}
|
= |
{z∈Z|∃x∈X(x∈A∧∃y∈Y(y∈f({x})∧z∈g({y}))∧∀y∈Y(y∈f({x})⇒z∈h({y})))}
|
⊆ |
{z∈Z|∃x∈X(x∈A∧∃y∈Y(y∈f({x})∧z∈g({y})∧z∈h({y}))}
|
= |
((f+(g∩h))(A) (∀A∈P(X))
|
-
(f∪k)+g=(f+g)∪(k+g)
|
((f∪k)+g)(A)
|
= |
{z∈Z|∃y∈Y(y∈(f∪k)(A)∧z∈g({y}))}
|
= |
{z∈Z|∃y∈Y(∃x∈X(x∈A∧(y∈f({x})∨y∈k({x}))∧z∈g({y})))}
|
= |
{z∈Z|∃x∈X(x∈A∧∃y∈Y((y∈f({x})∨y∈k({x}))∧z∈g({y})))}
|
= |
{z∈Z|∃x∈X(x∈A∧
(∃y∈Y((y∈f({x})∧z∈g({y}))∨∃y∈Y(y∈k({x}))∧z∈g({y}))))}
|
= |
((f+g)∪(k+g))(A) (∀A∈P(X))
|
-
(f∩k)+g⊆(f+g)∩(k+g)
|
((f∩k)+g)(A)
|
= |
{z∈Z|∃y∈Y(y∈(f∩k)(A)∧z∈g({y}))}
|
= |
{z∈Z|∃y∈Y(∃x∈X(x∈A∧(y∈f({x})∧y∈k({x}))∧z∈g({y})))}
|
= |
{z∈Z|∃x∈X(x∈A∧∃y∈Y((y∈f({x})∧y∈k({x}))∧z∈g({y})))}
|
⊆ |
{z∈Z|∃x∈X(x∈A∧
(∃y∈Y((y∈f({x})∧z∈g({y}))∧∃y∈Y(y∈k({x}))∧z∈g({y}))))}
|
= |
((f+g)∩(k+g))(A) (∀A∈P(X))
|
e: X→P(X), u: P(X)⊇{{x}|x∈X}→X を
と定義します。
Xを集合、G⊆P(X)、P⊆P(G)、p: P(G)→P(G)、p(H)=H∩P、
c: P(X)→P(X)、c(Y)=Y∩Gとします。
o, s: G→G を
-
1 ⊆ o+ + ⊆+
-
s+ ⊆ ⊆+
-
⊆+ ∩ (s+ + ⊆-) ⊆ 1 ∪ s+
を満たすものとします。
j: P(P(X))→P(X) を IMG を満たし、
ξ が IMG、MAP、EXT を満たし ζ が ψ + ζ ⊆ ψ (∀ψ: P(G)→P(G))
を満たすならば
-
ξ + ⊆- + ζ + j ⊆ ξ
-
ξ + ⊆+ + ζ + j ⊇ ξ または
ξ + ⊆+ + ζ + j = Φ (Φ: P(G)→P(G), Φ(H)=φ)
を満たすものとします。
-
Init = o+: P(G)→P(G)
-
Suc = s+: P(G)→P(G)
-
Lim = e + ⊆- + p + j+ + c: P(G)→P(G)
-
T1 = ⊆*(Init,1)
= ⊆*(o+,1): P(P(G))→P(P(G))
-
T2 = ⊆*(Suc,1)
= ⊆*(s+,1): P(P(G))→P(P(G))
-
T3 = ⊆*(Lim,1)
= ⊆*(e + ⊆- + p + j+ + c, 1)
: P(P(G))→P(P(G))
-
T*
= T1 + T2 + T3
: P(P(G))→P(P(G))
-
ρ: P(G)→P(P(G)), ρ(X) = P(G)
-
τ = ρ + (T* * u): P(G)→P(G)
と定義します。
f: P(G)→P(G) とすると次のことが成り立ちます。
-
f + Init ⊆ f
⇔ f + e + T1 = f + e
⇔ (f + e + T1) * u ⊆ f
-
f + Suc ⊆ f
⇔ f + e + T2 = f + e
⇔ (f + e + T2) * u ⊆ f
-
f + Lim ⊆ f
⇔ f + e + T3 = f + e
⇔ (f + e + T3) * u ⊆ f
-
f + e + T1 = f + e,
f + e + T2 = f + e,
f + e + T3 = f + e
⇒ f + e + T* = f + e
-
f + e + T* = f + e ⇒ τ ⊆ f
|
τ
= ρ + (T* * u)
= (ρ + T*) * u
⊆ (f + e + T*) * u
= (f + e) * u
= f
|
τ + e + T* = τ + e
証明
(i) τ + e + T1 = τ + e
|
(T1 * u) + Init
⊆ T1 * (u + Init)
= T1 * (T1 + u + Init)
⊆ T1 * (T1 + u)
= T1 * u
|
|
τ + Init
= ρ + (T* * u) + Init
= ρ + ((T* + T1) * u) + Init
= ρ + T* + (T1 * u) + Init
|
⊆ |
ρ + T* + (T1 * u)
= ρ + (T* + T1) * u
= ρ + (T* * u)
= τ
|
(ii) τ + e + T2 = τ + e
|
(T2 * u) + Suc
⊆ T2 * (u + Suc)
= T2 * (T2 + u + Suc)
⊆ T2 * (T2 + u)
= T2 * u
|
|
τ + Suc
= ρ + (T* * u) + Suc
= ρ + ((T* + T2) * u) + Suc
= ρ + T* + (T2 * u) + Suc
|
⊆ |
ρ + T* + (T2 * u)
= ρ + (T* + T2) * u
= ρ + (T* * u)
= τ
|
(iii) τ + e + T3 = τ + e
|
(T3 * u) + Lim
⊆ T3 * (u + Suc)
= T3 * (T3 + u + Lim)
⊆ T3 * (T3 + u)
= T3 * u
|
|
τ + Lim
= ρ + (T* * u) + Lim
= ρ + ((T* + T3) * u) + Lim
= ρ + T* + (T3 * u) + Lim
|
⊆ |
ρ + T* + (T3 * u)
= ρ + (T* + T3) * u
= ρ + (T* * u)
= τ
|
T0が鎖になることの証明
次のように定義します。
-
β = ⊆- ∪ (Suc + ⊆+): P(G)→P(G)
-
γ = ⊆- ∪ ⊆+: P(G)→P(G)
-
α = (⊆- + Suc) ∩ ⊆+: P(G)→P(G)
次のことが成り立ちます。
-
α ⊆ β
|
1
|
⊆ |
(1 * α) * (-α)
|
= |
(1 * α) * (-((⊆- + s+) ∩ ⊆+))
|
= |
(1 * α) * ((-(⊆- + s+)) ∩ (-⊆+))
|
= |
(1 * α) * ((s- + ⊆+) ∩ ⊆-)
|
⊆ |
(1 * α) * ((s- + ⊆+) ∩
(s- * (s+ + ⊆-)))
|
⊆ |
(1 * α) * (s- + (⊆+ ∩ (s+ + ⊆-)))
|
⊆ |
(1 * α) * (s- + (1 ∪ s+))
|
= |
(1 * α) * (s- ∪ (s- + s+))
|
= |
(1 * α) * (s- ∪ 1)
|
|
(1 * α)
|
⊆ |
((1 * α) * (1 ∪ s-)) * (-(1 ∪ s-))
|
⊆ |
1 * (-(1 ∪ s-))
|
= |
1 * (1 ∪ s+)
|
|
α ⊆ 1 ∪ s+ ⊆ β
|
-
ξ、η が IMG、MAP、EXT を満たすならば
((ξ + ⊆-) ∪ (η + ⊆+)) + Lim
⊆ (ξ + ⊆-) ∪ (η + ⊆+) (∀ξ,η: P(G)→P(G))
|
ζ が ψ + ζ ⊆ ψ (∀ψ: P(G)→P(G))を満たすならば
|
|
((ξ + ⊆-) ∪ (η + ⊆+)) + ζ + j
|
= |
(ξ + ⊆- + ζ + j) ∪ (η + ⊆+ + ζ + j)
⊆ ξ または ⊇ η
|
|
((ξ + ⊆-) ∪ (η + ⊆+)) + Lim
|
= |
((ξ + ⊆-) ∪ (η + ⊆+)) + e + ⊆- + p +
+ j+ + c
|
⊆ |
(ξ + ⊆-) ∪ (η + ⊆+)
|
-
β ⊆ Suc + γ
|
β
|
= |
⊆- ∪ (s+ + ⊆+)
|
⊆ |
(s+ + s- + ⊆-)
∪ (s+ + ⊆+)
|
= |
s+ + ((s- + ⊆-) ∪ ⊆+)
|
= |
s+ + ((-(-⊆- + -s-)) ∪ ⊆+)
|
= |
s+ + ((-(⊆+ + s+)) ∪ ⊆+)
|
⊆ |
s+ + ((-(⊆+ + ⊆+)) ∪ ⊆+)
|
⊆ |
s+ + ((-⊆+) ∪ ⊆+)
|
⊆ |
s+ + (⊆- ∪ ⊆+)
|
= |
Suc + γ
|
-
-γ = γ
|
-γ = -(⊆- ∪ ⊆+)
= (-⊆-) ∪ (-⊆+)
= ⊆+ ∪ ⊆-
= γ
|
-
(τ * γ) * τ ⊆ (τ * γ) * γ
|
A∈P(G), (τ * γ)(A)≠φ のとき
|
|
((τ * γ) * τ)(A)
|
= |
∩y∈(τ * γ)(A)τ({y})
|
= |
∩y∈(τ * γ)(A)τ(A)
|
= |
τ(A)
|
⊆ |
((τ * γ) * (-γ))(A)
|
= |
((τ * γ) * γ)(A)
|
|
A∈P(G), (τ * γ)(A)=φ のとき
|
|
((τ * γ) * τ)(A)
|
= |
∩y∈φτ({y})
|
= |
∩y∈φγ({y})
|
= |
((τ * γ) * γ)(A)
|
τ ⊆ (τ * γ) * β
証明
(i) ((τ * γ) * (β ∩ τ)) + e + T1 = ((τ * γ) * (β ∩ τ)) + e
|
β + Init ⊆ ⊆- ⊆ β
|
|
(β ∩ τ) + Init ⊆ β + Init ⊆ β
|
|
(β ∩ τ) + Init ⊆ τ + Init ⊆ τ
|
|
(β ∩ τ) + Init ⊆ β ∩ τ
|
|
((τ * γ) * (β ∩ τ)) + Init ⊆ (τ * γ) * (β ∩ τ)
|
(ii) ((τ * γ) * (β ∩ τ)) + e + T2 = ((τ * γ) * (β ∩ τ)) + e
|
β + Suc
|
= |
(⊆- ∪ (Suc + ⊆+)) + Suc
|
⊆ |
(⊆- + Suc) ∪ (Suc + ⊆+ + Suc)
|
⊆ |
(⊆- + Suc) ∪ (Suc + ⊆+ + ⊆+)
|
⊆ |
(⊆- + Suc) ∪ (Suc + ⊆+)
|
|
((τ * γ) * (β ∩ τ)) + Suc
|
⊆ |
(τ * γ) * ((β ∩ τ) + Suc)
|
⊆ |
(τ * γ) * ((β + Suc) ∩ (τ + Suc))
|
⊆ |
(τ * γ) * (((⊆- + Suc) ∪ (Suc + ⊆+)) ∩ τ)
|
⊆ |
(τ * γ) * (((⊆- + Suc) ∪ (Suc + ⊆+)) ∩ γ ∩ τ)
|
⊆ |
(τ * γ) * (((⊆- + Suc) ∪ (Suc + ⊆+)) ∩
(⊆- ∪ ⊆+) ∩ τ)
|
⊆ |
(τ * γ) * ((⊆- ∪
((⊆- + Suc) ∩ ⊆+) ∪
(Suc + ⊆+)) ∩ τ)
|
⊆ |
(τ * γ) * (β ∩ τ)
|
(iii) ((τ * γ) * (β ∩ τ)) + e + T3 = ((τ * γ) * (β ∩ τ)) + e
|
β + Lim
|
= |
(⊆- ∪ (Suc + ⊆+)) + Lim
|
⊆ |
⊆- ∪ (Suc + ⊆+)
|
= |
β
|
|
(β ∩ τ) + Lim ⊆ β + Lim ⊆ β
|
|
(β ∩ τ) + Lim ⊆ τ + Lim ⊆ τ
|
|
(β ∩ τ) + Lim ⊆ β ∩ τ
|
|
((τ * γ) * (β ∩ τ)) + Lim ⊆ (τ * γ) * (β ∩ τ)
|
τ ⊆ τ * γ
証明
(i) (τ * γ) + e + T1 ⊆ (τ * γ) + e
|
γ + Init ⊆ ⊆- ⊆ γ
|
|
τ * (γ + Init) ⊆ τ * γ
|
|
(τ * γ) + Init ⊆ τ * γ
|
(ii) (τ * γ) + e + T2 ⊆ (τ * γ) + e
|
τ ⊆ (τ * γ) * β ⊆ (τ * γ) * (Suc + γ) ⊆ ((τ * γ) + Suc) * γ
|
|
(τ * γ) + Suc ⊆ (((τ * γ) + Suc) * γ) * γ ⊆ τ * γ
|
(iii) (τ * γ) + e + T2 ⊆ (τ * γ) + e
|
γ + Lim
|
= |
(⊆- ∪ ⊆+) + Lim
|
⊆ |
⊆- ∪ ⊆+
|
= |
γ
|
|
τ * (γ + Lim) ⊆ τ * γ
|
|
(τ * γ) + Lim ⊆ τ * γ
|